Abstract
The use of Electro-encephalography (EEG) for Brain Computer Interface (BCI) provides a cost-efficient, safe, portable and easy to use BCI for both healthy users and the disabled. This paper will first briefly review some of the current challenges in BCI research and then discuss two of them in more detail, namely modeling the no command (rest) state and the use of control paradigms in BCI. For effective prosthetic control of a BCI system or when employing BCI as an additional control-channel for gaming or other generic man machine interfacing, a user should not be required to be continuously in an active state, as is current practice. In our approach, the signals are first transduced by computing Gaussian probability distributions of signal features for each mental state, then a prior distribution of idle-state is inferred and subsequently adapted during use of the BCI. We furthermore investigate the effectiveness of introducing an intermediary state between state probabilities and interface command, driven by a dynamic control law, and outline the strategies used by 2 subjects to achieve idle state BCI control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.