Abstract
Breast cancer is a prevalent disease that primarily affects women globally, but it can also affect men. Early detection is crucial for better treatment outcomes, and mammography is a common screening method. Recommendations for mammograms vary by age and country. Early breast cancer screening is vital for timely interventions. This paper aims to introduce AI methods through deep learning approaches utilizing pretrained CNN-based models for the diagnosis of masses depicted in breast images. These masses may be either malignant or benign, necessitating distinct management strategies for each scenario. The pretrained model ResNet18 applied to a combined dataset of three datasets (INbreast+MIAS+DDSM) yielded the best estimated result, with an accuracy of 95% (94.90% precision, 94.91% recall and 94.91% F1-score).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Jordanian Journal of Computers and Information Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.