Abstract

Abstract In the current study the feasibility of using solar-based renewables coupled with thermal energy storage (TES) to displace gas for heating was explored. To assess the feasibility, a numerical model of an air-based encapsulated phase change (EPCM) storage system was developed, validated, optimised, and economically costed. The optimised air-based EPCM system utilised a high and low melting temperature phase change material (PCM) with a sensible storage filler. It was found that a capsule radius of 10 mm and PCM volume of 13% resulted in the lowest cost of discharged thermal energy of $25.55/kWh when storage effectiveness and pumping power was considered. This system was then coupled to solar data for Adelaide, South Australia, to simulate the performance of a 1 MWt heat load over a year. By solving an hourly system generation and demand profile, it was found that a concentrated solar thermal (CST) and photovoltaic (PV) system coupled with TES was able to economically reduce gas consumption by 45–65% when the price of gas was $30/GJ. By employing near-term cost estimates for CST and PV systems coupled with TES, it was found that gas consumption could be reduced by similar amounts with a gas price of $20/GJ.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call