Abstract
Semantic slot filling is one of the most challenging problems in spoken language understanding (SLU). In this paper, we propose to use recurrent neural networks (RNNs) for this task, and present several novel architectures designed to efficiently model past and future temporal dependencies. Specifically, we implemented and compared several important RNN architectures, including Elman, Jordan, and hybrid variants. To facilitate reproducibility, we implemented these networks with the publicly available Theano neural network toolkit and completed experiments on the well-known airline travel information system (ATIS) benchmark. In addition, we compared the approaches on two custom SLU data sets from the entertainment and movies domains. Our results show that the RNN-based models outperform the conditional random field (CRF) baseline by 2% in absolute error reduction on the ATIS benchmark. We improve the state-of-the-art by 0.5% in the Entertainment domain, and 6.7% for the movies domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Audio, Speech, and Language Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.