Abstract

The computational effort of trajectory planning for automated vehicles often increases with the complexity of the traffic situation. This is particularly problematic in safety-critical situations, in which the vehicle must react in a timely manner. We present a novel motion planning approach for automated vehicles, which combines set-based reachability analysis with convex optimization to address this issue. This combination makes it possible to find driving maneuvers even in small and convoluted solution spaces. In contrast to existing work, the computation time of our approach typically decreases, the more complex situations become. We demonstrate the benefits of our motion planner in scenarios from the CommonRoad benchmark suite and validate the approach on a real test vehicle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.