Abstract

Areal mineral maps are constructed from the polished sections of particles that settle to the bottom of epoxy resin. However, heavy minerals can preferentially settle to the bottom, making the polished surface rich in heavy minerals. Therefore, polished sections will become biased estimates of the volumetric (3D) map. The study aims to test whether any vertical cross-section (any section along the settling direction of particles) can be an unbiased estimate of the 3D mineral map of a chromite ore sample. For the purpose of this study, 2D maps of the vertical cross-sections were acquired by using Random Forest classification coupled with image pre- and post-processing tools. Then, 3D mineral maps were converted from 2D maps without assuming stereological errors. The modal mineralogy and particle size distributions predicted from 3D maps were compared with the same features estimated from the particulate sample by XRD and dry sieving analyses, respectively. Any 2D map which yields a modal mineralogy and a size distribution similar to the true analyses was selected as an unbiased estimate of the true 3D map. The results suggest that any vertical cross-section is an unbiased estimate, unlike polished section at which heavier minerals settle preferentially.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.