Abstract

AbstractAimThe Southern Ocean landmasses have intrigued biologists for centuries because they share many taxonomic groups. Such disjunct taxa can provide insight into evolutionary processes that connect populations or drive divergence. The lichenized fungus Pseudocyphellaria glabra, for example, has a disjunct distribution—separated by the Tasman Sea and the Pacific Ocean—yet whether these locations should be genetically distinct is unclear. The large distances between continents may be expected to prohibit gene flow, but strong and sustained winds in the Southern Hemisphere and the small size of P. glabra propagules may facilitate migration. We compared support for these two hypotheses.LocationSoutheastern Australia, Tasmania, New Zealand and Southern Chile.TaxonPseudocyphellaria glabra (Hook. f. & Taylor) C.W. Dodge, 1948 (Ascomycota, Peltigeraceae)MethodsWe collected 371 samples across the disjunct range of P. glabra. We generated genomic data using restriction site‐associated DNA sequencing and reconstructed a Maximum Likelihood phylogeny using 29,098 unlinked SNPs. We then conducted population genomic analyses using 3,756 SNPs including a minimum‐spanning network, principal components analysis, discriminate analysis of principal components, and k‐means clustering.ResultsMaximum likelihood analysis recovered multiple well‐supported clades that roughly corresponded to geography. Population genomic analyses identified genetic structuring that generally corresponded with geographic distance; however, some individuals from Chile and Australia were assigned to genetic clusters found in New Zealand, suggesting that recent dispersal events from New Zealand have successfully colonized Chile and Australia.Main conclusionPopulations of P. glabra from Australia, Chile and New Zealand are genetically distinct, but frequent long‐distance dispersal during the Quaternary probably prevented speciation. This study demonstrates the power of restriction‐site associated DNA sequencing for discernment between divergent and connective evolutionary forces that simultaneously influence the population structure of species with disjunct ranges in the Southern Ocean landmasses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.