Abstract
Abstract Personalization algorithms are the information undercurrent of the digital age. They learn users’ behaviors and tailor content to individual interests and predicted tastes. These algorithms, in turn, categorize and represent these users back to society—culturally, politically, and racially. Researchers audit personalization algorithms to critique the ways bias is perpetuated within these systems. Yet, research examining the relationship between personalization algorithms and racial bias has not yet contended with the complexities of conceptualizing race. This article argues for the use of racialized discourse communities within algorithm audits, providing a way to audit algorithms that accounts for both the historical and cultural influences of race and its measurement online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.