Abstract
Hepatitis B virus (HBV) infection is one of the main leading causes of hepatocellular carcinoma (HCC) worldwide. However, it remains uncertain how the reverse-transcriptase (rt) gene contributes to HCC progression. We enrolled a total of 307 patients with chronic hepatitis B (CHB) and 237 with HBV-related HCC from 13 medical centers. Sequence features comprised multidimensional attributes of rt nucleic acid and rt/s amino acid sequences. Machine-learning models were used to establish HCC predictive algorithms. Model performances were tested in the training and independent validation cohorts using receiver operating characteristic curves and calibration plots. A random forest (RF) model based on combined metrics (10 features) demonstrated the best predictive performances in both cross and independent validation (AUC, 0.96; accuracy, 0.90), irrespective of HBV genotypes and sequencing depth. Moreover, HCC risk scores for individuals obtained from the RF model (AUC, 0.966; 95% confidence interval, .922-.989) outperformed α-fetoprotein (0.713; .632-.784) in distinguishing between patients with HCC and those with CHB. Our study provides evidence for the first time that HBV rt sequences contain vital HBV quasispecies features in predicting HCC. Integrating deep sequencing with feature extraction and machine-learning models benefits the longitudinal surveillance of CHB and HCC risk assessment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.