Abstract

Nuclear magnetic resonance (NMR) spectroscopy provides detailed information about the structure and dynamics of proteins by exploiting the conformational dependence of the magnetic properties of certain atomic nuclei. The mapping between NMR measurements and molecular structures, however, often requires approximated descriptions based on the fitting of a number of parameters, thus reducing the quality of the information available from the experiments. To improve on this limitation, we show here that it is possible to use pseudocontact shifts and residual dipolar couplings as "exact" NMR restraints. We implement this strategy by using a replica-averaging method and illustrate its application by calculating an ensemble of structures representing the dynamics of the two-domain protein calmodulin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.