Abstract

We describe a method of designing artificial sequences that resemble naturally occurring sequences in terms of their compatibility with a template structure and its functional constraints. The design procedure is a Monte Carlo simulation of amino acid substitution process. The selective fixation of substitutions is dictated by a simple scoring function derived from the template structure and a multiple alignment of its homologs. Designed sequences represent an enlargement of sequence space around native sequences. We show that the use of designed sequences improves the performance of profile-based homology detection. The difference in position-specific conservation between designed sequences and native sequences is helpful for prediction of functionally important residues. Our sequence selection criteria in evolutionary simulations introduce amino acid substitution rate variation among sites in a natural way, providing a better model to test phylogenetic methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.