Abstract

Maximum overlap methods are effective tools for optimizing challenging ground- and excited-state wave functions using self-consistent field models such as Hartree-Fock and Kohn-Sham density functional theory. Nevertheless, such models have shown significant sensitivity to the user-defined initial guess of the target wave function. In this work, a projection operator framework is defined and used to provide a metric for non-aufbau orbital selection in maximum-overlap-methods. The resulting algorithms, termed the Projection-based Maximum Overlap Method (PMOM) and Projection-based Initial Maximum Overlap Method (PIMOM), are shown to perform exceptionally well when using simple user-defined target solutions based on occupied/virtual molecular orbital permutations. This work also presents a new metric that provides a simple and conceptually convenient measure of agreement between the desired target and the current or final SCF results during a calculation employing a maximum-overlap method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call