Abstract

Routine therapeutic drug monitoring (TDM) relies heavily on measuring trough drug concentrations. Trough concentrations are affected not only by drug bioavailability and clearance, but also by various patient and disease factors and the volume of distribution. This often makes interpreting differences in drug exposure from trough data challenging. This study aimed to combine the advantages of top-down analysis of therapeutic drug monitoring data with bottom-up physiologically-based pharmacokinetic (PBPK) modeling to investigate the effect of declining renal function in chronic kidney disease (CKD) on the nonrenal intrinsic metabolic clearance ( CLint ) of tacrolimus as a case example. Data on biochemistry, demographics, and kidney function, along with 1167 tacrolimus trough concentrations for 40 renal transplant patients, were collected from the Salford Royal Hospital's database. A reduced PBPK model was developed to estimate CLint for each patient. Personalized unbound fractions, blood-to-plasma ratios, and drug affinities for various tissues were used as priors to estimate the apparent volume of distribution. Kidney function based on the estimated glomerular filtration rate ( eGFR ) was assessed as a covariate for CLint using the stochastic approximation of expectation and maximization method. At baseline, the median (interquartile range) eGFR was 45 (34.5-55.5) mL/min/1.73 m 2 . A significant but weak correlation was observed between tacrolimus CLint and eGFR (r = 0.2, P < 0.001). The CLint declined gradually (up to 36%) with CKD progression. Tacrolimus CLint did not differ significantly between stable and failing transplant patients. Kidney function deterioration in CKD can affect nonrenal CLint for drugs that undergo extensive hepatic metabolism, such as tacrolimus, with critical implications in clinical practice. This study demonstrates the advantages of combining prior system information (via PBPK) to investigate covariate effects in sparse real-world datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.