Abstract

Tetrahedrally-bonded materials, such as silicon, diamond, or gallium nitride, are characterized by a low coordination number of 4 in the crystalline phase and, in general, can exhibit a liquid phase with higher density and coordination. This leads to interesting thermodynamic behavior, including the lowering of the melting temperature with increasing pressure and the possible existence of distinct low- and high-density liquid phases. Using molecular dynamics simulations, we explored the role of pressure and the degree of tetrahedrality on the structure and phase equilibria between the crystalline and liquid phases of tetrahedrally-bonded materials. In addition to the thermodynamic melting point, we determined the temperature of mechanical stability (spinodal temperature) as a function of pressure. The latter temperature is relevant to the laser pulse rapid melting of tetrahedrally-bonded materials. The results of our simulations indicate the possibility of the existence of a thermodynamically stable low-density liquid phase of silicon at high pressures. Our simulation also suggests that GaN is unlikely to exhibit anomalous thermodynamic behavior due to a high degree of tetragonality preventing the formation of high-density liquid, even at high pressures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.