Abstract

AbstractA pre‐formed Meisenheimer complex of a naphthalenediimide (NDI) with tetrabutylammonium fluoride (TBAF) is obtained in a simple way by mixing dibrominated 4,9‐dibromo‐2,7‐bis(2‐octyldodecyl)benzo[lmn][3,8]phenanthroline‐1,3,6,8(2H,7H)‐tetraone and TBAF in solution and used as a dopant for n‐type organic thermoelectrics. Two n‐type polymers PNDIClTVT and PBDOPVTT are synthesized, n‐doped, and characterized as conductive and thermoelectric materials. PNDIClTVT doped with NDI‐TBAF presents a high σ value of 0.20 S cm–1, a Seebeck coefficient (S) of −1854 µV K–1, and a power factor (PF) of 67 µW m–1 K–2, among the highest reported PF in solution‐processed conjugated n‐type polymer thermoelectrics. Using 4‐(1,3‐dimethyl‐2,3‐dihydro‐1H‐benzoimidazol‐2‐yl)phenyl)dimethylamine and NDI‐TBAF as co‐dopants, PNDIClTVT has a PF > 35 µW m–1 K–2; while for PBDOPVTT σ = 0.75 S cm–1 and PF = 58 µW m–1 K–2. In this study it is found that an ionic adduct together with a neutral dopant improves the performance of n‐type organic thermoelectrics leading to an enhanced power factor, and more generally, the role of such an adduct in polymer doping is also elucidated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.