Abstract
Measures of student disadvantage—or risk—are critical components of equity-focused education policies. However, the risk measures used in contemporary policies have significant limitations, and despite continued advances in data infrastructure and analytic capacity, there has been little innovation in these measures for decades. We develop a new measure of student risk for use in education policies, which we call Predicted Academic Performance (PAP). PAP is a flexible, data-rich indicator that identifies students at risk of poor academic outcomes. It blends concepts from emerging early warning systems with principles of incentive design to balance the competing priorities of accurate risk measurement and suitability for policy use. In proof-of-concept policy simulations using data from Missouri, we show PAP is more effective than common alternatives at identifying students who are at risk of poor academic outcomes and can be used to target resources toward these students—and students who belong to several other associated risk categories—more efficiently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.