Abstract

If the Hamiltonian is time dependent it is common to solve the time-dependent Schrödinger equation by dividing the propagation interval into slices and using an (e.g., split operator, Chebyshev, Lanczos) approximate matrix exponential within each slice. We show that a preconditioned adaptive step size Runge-Kutta method can be much more efficient. For a chirped laser pulse designed to favor the dissociation of HF the preconditioned adaptive step size Runge-Kutta method is about an order of magnitude more efficient than the time sliced method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call