Abstract
Much of relational algebra and the underlying principles of relational database design have a simple representation in the theory of domains that is traditionally used in the denotational semantics of programming languages. By investigating the possible orderings on powerdomains that are well known in the study of nondeterminism and concurrency it is possible to show that many of the ideas in relational databases apply to structures that are much more general than relations. This also suggests a method of representing database objects as typed objects in programming languages. In this paper we show how operations such as natural join and projection—which are fundamental to relational database design—can be generalized, and we use this generalized framework to give characterizations of several relational database concepts including functional dependencies and universal relations. All of these have a simple-minded semantics in terms of the underlying domains, which can be thought of as domains of partial descriptions of “real-world” objects. We also discuss the applicability of relational database theory to nonrelational structures such as records with variants, higher-order relations, recursive structures and other ordered spaces.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.