Abstract
Positron emission particle tracking (PEPT) is a relatively new technique allowing the quantitative study of flow phenomena in three dimensions in opaque systems that cannot be studied by optical methods such as particle image velocimetry (PIV) or laser Doppler anemometry (LDA). Here, velocity measurements made using PEPT in two sizes of baffled vessel (∼0.20 m and ∼0.29 m diameter) and two different viscosity fluids agitated by a Rushton turbine are compared for the first time directly in depth with some studies reported in the literature made by LDA for the turbulent regime in the equivalent geometry. Initially, the paper considers how the Lagrangian data obtained by PEPT can be converted into Eulerian in order to make the comparison most effective. It also considers ways of data treatment that improve the accuracy of both the raw PEPT data and the velocities determined from it. It is shown that excellent agreement is found between the PEPT and literature results, especially for the smaller vessel, except for the radial velocity just off the tip of the blade in the plane of the disc of the Rushton turbine. This difference is attributed to the very rapid changes in both magnitude and direction that occurs in that region and also to the different way of ensemble averaging in the two techniques. In addition, the results for the absolute velocities normalised by the impeller tip velocity for all the rectangular cross-section toroidal cells in each size of vessel and each fluid and a range of agitator speeds are compared in the form of frequency histograms. In this analysis, the velocities for each run are obtained from PEPT based on tracking a particle for 30 min and the mean and mode of the velocities each decrease slightly with decreasing scale and Reynolds number. The possible reasons for this variation in the mode and the mean are discussed. Overall, it is concluded that for the radial flow Rushton turbine the PEPT technique can be used to obtain accurate velocity data throughout the entire complex three-dimensional turbulent flow field in an agitated, baffled vessel except very close to the impeller in the radial discharge stream.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.