Abstract

• Population of models framework is used for coal seam gas model. • Individual well simulation results closely match production data. • Spatial heterogeneity is explored using population of models outcomes. In this work, we discuss the use of a local model developed previously [1] that describes the multiphase flow of gaseous species and liquid water within a single coal seam to investigate the gas production from a spatially heterogeneous production field. The field is located within the Surat Basin in Queensland, and is composed of a total of 80 production wells spread over a region covering approximately 36 km 2 . However, not every well is producing gas at any one time and so in this work we take a subset of 42 wells that are the top-producing wells in terms of total gas volume. We utilise a population of models approach to understand the variability in the underlying physical processes, and as a mechanism for dealing with the spatial heterogeneity that arises due to geological variation across the field. We are able to simultaneously obtain a family of parameter sets for each of these wells, in which each set in the family yields a predicted cumulative total gas production curve that matches the measured cumulative production curve for a given well to within an allowable limit of error. By analysing the results of this population of models approach we can identify the similarities between wells based on the parameter distributions, and understand the sensitivity of key model parameters. We show by example that high correlation between wells based on their parameter values may be an indicator of their similarity. A combinatorial sum of the predicted gas production is compared against the individual gas volumes (given in terms of percentage of the total volume) measured at the compression facility as a way of further calibrating a subpopulation of models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.