Abstract

Although several synthetic polypeptide-based nano-prodrugs (NPDs) have entered clinical trials for cancer treatment, achieving a highly effective production of the NPDs for clinical translation remains a challenge. Herein, we develop a typical preparation of pH/glutathione (GSH) dual-responsive glycopolypeptide analogue NPDs having a high drug capsulation/loading efficiency of ca. 93% and ca. 27% even based on ring-opening polymerization (ROP) of a novel and general furan-containing N-carboxyanhydride (NCA) monomer, which facilitates the Diels-Alder (D-A) side-chain functionalization by maleimide modified chemotherapy drug without using any reactive additives. High reactivity of the D-A reaction resulting in the high preparation efficiency of the NPDs is confirmed by 1H NMR and density functional theory (DFT) calculations. The self-assembled properties as well as the dual-responsiveness of the NPDs are systemically studied by particle size and zeta potential assay, transmission electron microscopy and drug-delivery dynamics. The cell uptake mechanism, intracellular drug distribution, in vitro/vivo antitumor activity evaluations and the main organ damages of the NPDs are all investigated. Our work can provide a good solution to solve the inefficient fabrication of the smart synthetic polypeptide-based micelles for cancer treatment by following this general and sophisticated platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.