Abstract

The binding of three distinct agonists-acetylcholine (ACh), nicotine, and epibatidine-to the nicotinic acetylcholine receptor has been probed using unnatural amino acid mutagenesis. ACh makes a cation-pi interaction with Trp alpha149, while nicotine employs a hydrogen bond to a backbone carbonyl in the same region of the agonist binding site. The nicotine analogue epibatidine achieves its high potency by taking advantage of both the cation-pi interaction and the backbone hydrogen bond. A simple structural model that considers only possible interactions with Trp alpha149 suggests that a novel aromatic C-H...O=C hydrogen bond further augments the binding of epibatidine. These studies illustrate the subtleties and complexities of the interactions between drugs and membrane receptors and establish a paradigm for obtaining detailed structural information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.