Abstract

Nanosecond phonon pulse experiments have been used to determine fundamental parameters of STJs relevant to their use as X-ray photon detectors. A non-equilibrium distribution of phonons is used to generate an excess non-equilibrium quasi-particle (qp) density in the STJ base electrode. The time dependence of the subsequent current signal is given by the sum of two exponential contributions which depend solely on the qp loss rates and tunnel rates for the top and base electrode of the device. Hence, four fundamental STJ parameters can be determined from measurements of the exponential time constants and pre-exponential current amplitudes. The technique outlined here is demonstrated by data taken on a high-quality 50 μm×50 μm niobium-based STJ.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.