Abstract

AbstractCosolvent flooding using water miscible solvents such as alcohols has been proposed as an in situ NAPL remediation technique. This process is conceptually similar to enhanced oil recovery (EOR) using alcohols and some surfactant formulations. As a result of interest in the EOR aspects of these systems, analytical and graphical methods based on fractional flow theory were developed in the petroleum engineering literature for modeling theses floods. The existing fractional flow solutions have not been used previously in environmental applications of cosolvent flooding, but they are applicable and provide many useful insights into the process. These applications are discussed, with an emphasis on emplaining the mechanisms which tend to mobilize trapped NAPL during a cosolvent flood. The theory provides a simple way to predict the general behavior of a cosolvent flood using the phase diagram. It is concluded that the one‐dimensional performance of a cosolvent flood can be predicted largely by inspection of the ternary phase diagram. In particular, the nature of the cosolvent flood depends primarily on the position of the cosolvent injection concentration relative to a critical the line extension which passes through the plait point, tangent to the binodal curve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.