Abstract

ObjectiveTo evaluate physiologically based pharmacokinetic modelling (PBPK) software in paediatric asthma patients using intravenous aminophylline. MethodsProspective clinical audit of children receiving iv aminophylline (July 2014 to June 2016), and in-silico modelling using Simcyp software. ResultsThirty-eight admissions (25 children) were included. Children with aminophylline levels ≥10 mg/l had equivalent clinical outcomes compared to those <10 mg/L, and adverse effects occurred in 57%. Therapeutic drug monitoring (TDM) data correlated well with PBPK model. PBPK modelling of a 5 mg/kg iv loading dose (≤18yr) shows a mean Cmax of 8.99 mg/L (5th-95th centiles 5.5–13.7 mg/L), with 70.3% of subjects <10 mg/L, 29.4% achieving 10-20 mg/L, and 0.1% > 20 mg/L. For an aminophylline infusion (0-12 y) of 1.0 mg/kg/h, the mean steady state infusion concentration was 16.4 mg/L, (5th-95th centiles 5.3–32 mg/L), with 26.8% having a serum concentration >20 mg/L. For 12-18yr receiving 0.5 mg/kg/h infusion, the mean steady state infusion concentration was 9.37 mg/L (5th-95th centiles 3.4–18 mg/L), with 59.8% having a serum concentration <10 mg/L. ConclusionPBPK software modelling correlates well with clinical data. Current aminophylline iv loading dosage recommendations achieve levels <10 mg/l in 70% of children. Routine TDM may need altering as low risk of toxicity (>20 mg/l).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.