Abstract
Ubiquitin is a small 8.6 kDa protein that is a core component of the ubiquitin-proteasome system. Consequently, it can bind to a diverse array of proteins with high specificity but low affinity. Through phage display, ubiquitin variants (UbVs) can be engineered such that they exhibit improved affinity over wildtype ubiquitin and maintain binding specificity to target proteins. Phage display utilizes a phagemid library, whereby the pIII coat protein of a filamentous M13 bacteriophage (chosen because it is displayed externally on the phage surface) is fused with UbVs. Specific residues of human wildtype ubiquitin are soft and randomized (i.e., there is a bias towards to native wildtype sequence) to generate UbVs so that deleterious changes in protein conformation are avoided while introducing the diversity necessary for promoting novel interactions with the target protein. During the phage display process, these UbVs are expressed and displayed on phage coat proteins and panned against a protein of interest. UbVs that exhibit favorable binding interactions with the target protein are retained, whereas poor binders are washed away and removed from the library pool. The retained UbVs, which are attached to the phage particle containing the UbV's corresponding phagemid, are eluted, amplified, and concentrated so that they can be panned against the same target protein in another round of phage display. Typically, up to five rounds of phage display are performed, during which a strong selection pressure is imposed against UbVs that bind weakly and/or promiscuously so that those with higher affinities are concentrated and enriched. Ultimately, UbVs that demonstrate higher specificity and/or affinity for the target protein than their wildtype counterparts are isolated and can be characterized through further experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.