Abstract

We propose a method, based on persistent homology, to uncover topological properties of a priori unknown covariates in a system governed by the kinetic Ising model with time-varying external fields. As its starting point the method takes observations of the system under study, a list of suspected or known covariates, and observations of those covariates. We infer away the contributions of the suspected or known covariates, after which persistent homology reveals topological information about unknown remaining covariates. Our motivating example system is the activity of neurons tuned to the covariates physical position and head direction, but the method is far more general.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.