Abstract

In spite of the fact that there has been a significant increase in the number of solved protein structures, structural information is missing for many proteins. Although structural information is codified in the amino acid sequence, computational prediction using only this information is still an unsolved problem. However, one successful method to model a protein's structure starting from the primary sequence is to use contact prediction derived from multiple sequence alignment (MSA). Here we use our contact predictor PconsC4 to generate a list of probable contacts between residues in the primary sequences. These contacts are then used together with the secondary structure prediction as constraints for the CONFOLD folding method. In this way, a 3D protein model can be built starting directly from the primary sequence. © 2019 by John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.