Abstract
BackgroundEvery day, patients are admitted to the hospital with conditions that could have been effectively managed in the primary care sector. These admissions are expensive and in many cases are possible to avoid if early intervention occurs. General practitioners are in the best position to identify those at risk of imminent hospital presentation and admission; however, it is not always possible for all the factors to be considered. A lack of shared information contributes significantly to the challenge of understanding a patient’s full medical history. Some health care systems around the world use algorithms to analyze patient data in order to predict events such as emergency presentation; however, those responsible for the design and use of such systems readily admit that the algorithms can only be used to assess the populations used to design the algorithm in the first place. The United Kingdom health care system has contributed data toward algorithm development, which is possible through the unified health care system in place there. The lack of unified patient records in Australia has made building an algorithm for local use a significant challenge.ObjectiveOur objective is to use linked patient records to track patient flow through primary and secondary health care in order to develop a tool that can be applied in real time at the general practice level. This algorithm will allow the generation of reports for general practitioners that indicate the relative risk of patients presenting to an emergency department.MethodsA previously designed tool was used to deidentify the general practice and hospital records of approximately 100,000 patients. Records were pooled for patients who had attended emergency departments within the Eastern Health Network of hospitals and general practices within the Eastern Health Network catchment. The next phase will involve development of a model using a predictive analytic machine learning algorithm. The model will be developed iteratively, testing the combination of variables that will provide the best predictive model.ResultsRecords of approximately 97,000 patients who have attended both a general practice and an emergency department have been identified within the database. These records are currently being used to develop the predictive model.ConclusionsRecords from general practice and emergency department visits have been identified and pooled for development of the algorithm. The next phase in the project will see validation and live testing of the algorithm in a practice setting. The algorithm will underpin a clinical decision support tool for general practitioners which will be tested for face validity in this initial study into its efficacy.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.