Abstract

Transition from bubbling to turbulent in a conventional gas–solid fluidized bed was evaluated from trajectory of particles in fluidized bed. A series of experiments were carried out in a lab-scale fluidization bed using radioactive particle tracking (RPT) technique for recording the position of a tracer in the bed. Statistical parameters, such as standard deviation and skewness of the time–position data, were utilized to determine the transition velocity from bubbling to turbulent regime. The results showed that the data obtained by the RPT technique can predict transition velocity. It was shown that the standard deviation of position fluctuations reach a maximum with increasing superficial gas velocity corresponding to regime transition. It was shown that transition from bubbling to turbulent can be determined using skewness and kurtosis of time–position data. The velocities obtained in this work are in good agreement with the available correlations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.