Abstract
Understanding how the complex interactions of the problem-algorithm combination lead to an algorithm's search performance is arguably one of the most important open questions in metaheuristic algorithm theory. Examination of the fitness landscape does not provide all of the information needed to understand a metaheuristic algorithm's search behavior. We introduce an extension to the fitness landscape, which we call a search behavior diagram, that models a metaheuristic algorithm's expected search behavior across an entire fitness landscape. We then show that analyzing a search behavior diagram can produce insights into the nature of metaheuristic algorithm search behavior on problems from binary optimization, including one interesting insight about the relationship between the distribution of optima and adaptive search behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.