Abstract
Glycosylation is the most widespread protein modification and is known to modulate signal transduction and several biologically important interactions. In order to understand and evaluate the biological role of glycosylation it is important to identify the glycosylated protein and localize the site glycosylation under particular biological conditions. To identify glycosylated peptides from simple mixtures, i.e., in-gel digests from single SDS PAGE bands we performed high resolution, high accuracy precursor ion scanning using a quadrupole TOF instrument equipped with the Q 2 pulsing function. The high resolving power of the quadrupole TOF instrument results in the selective detection of glycan specific fragment ions minimizing the interference of peptide derived fragment ions with the same nominal mass. Precursor ion scanning has been previously described for these glycan derived ions. However the use of this method has been limited by the low specificity of the method. The analysis using precursor ion scanning can be applied to any peptide mixture from a protein digest without having previous knowledge of the glycosylation of the protein. In addition to the low femtomole (nanomolar) detection limits, this method has the advantage that no prior derivatization or enzymatic treatment of the peptide mixtures is required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society for Mass Spectrometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.