Abstract

Visual simultaneous localisation and mapping (SLAM) is since the last decades an often addressed problem. Online mapping enables tracking in unknown environments. However, it also suffers from high computational complexity and potential drift. Moreover, in augmented reality applications the map itself is often not needed and the target environment is partially known, e.g. in a few 3D anchor or marker points. In this paper, rather than using SLAM, measurements based on optical flow are introduced. With these measurements, a modified visual-inertial tracking method is derived, which in Monte Carlo simulations reduces the need for 3D points and allows tracking for extended periods of time without any 3D point registrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.