Abstract
The association of organic–inorganic colloid-borne trace elements was investigated. Radionuclide 152+154Eu(III) was chosen as a representative and chemical homologue for trivalent lanthanide and actinide ions present in radioactive nuclear waste. Effect of pH and contact time of organic–inorganic/Eu(III) on the kinetic dissociation of Eu(III) from HA–Al 2O 3 colloids was studied. The kinetic desorption behavior of sorbed 152+154Eu(III) from humic acid–γ-Al 2O 3 colloids was studied at pH values of 4.5 ± 0.2, 5.3 ± 0.2 and 6.5 ± 0.2, respectively, by the addition of the chelating resin. The experimental results suggest that the fractions of irreversible sorption of radionuclide 152+154Eu(III) to HA–Al 2O 3 colloids increase with increasing pH values, and are independent of aging time. At least two different species, “weak” and “strong” dissociation fractions, are required to simulate the kinetic desorption of 152+154Eu(III) from HA–Al 2O 3 colloids. The species of Eu(III) sorbed on HA–Al 2O 3 colloids move from “weak” sites to “strong” sites with increasing aging time, whereas the fractions of irreversible sorption are independent of aging time. The results are important for the evaluation of radionuclides’ behavior in the environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.