Abstract
Similarity metrics are widely used in computer graphics. In this paper, we will concentrate on a new, algorithmic complexity-based metric called Normalized Compression Distance. It is a universal distance used to compare strings. This measure has also been used in computer graphics for image registration or viewpoint selection. However, there is no previous study on how the measure should be used: which compressor and image format are the most suitable. This paper presents a practical study of the Normalized Compression Distance (NCD) applied to color images. The questions we try to answer are: Is NCD a suitable metric for image comparison? How robust is it to rotation, translation, and scaling? Which are the most adequate image formats and compression algorithms? The results of our study show that NCD can be used to address some of the selected image comparison problems, but care must be taken on the compressor and image format selected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.