Abstract

Normal mode analysis (NMA) is a fast and inexpensive approach that is largely used to gain insight into functional protein motions, and more recently to create conformations for further computational studies. However, when the protein structure is unknown, the use of computational models is necessary. Here, we analyze the capacity of NMA in internal coordinate space to predict protein motion, its intrinsic flexibility, and atomic displacements, using protein models instead of native structures, and the possibility to use it for model refinement. Our results show that NMA is quite insensitive to modeling errors, but that calculations are strictly reliable only for very accurate models. Our study also suggests that internal NMA is a more suitable tool for the improvement of structural models, and for integrating them with experimental data or in other computational techniques, such as protein docking or more refined molecular dynamics simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.