Abstract

Realistic macro-level finite element simulations of the mechanical behavior of trabecular bone, a cellular anisotropic material, require a suitable constitutive model; a model that incorporates the mechanical response of bone for complex loading scenarios and includes post-elastic phenomena, such as plasticity (permanent deformations) and damage (permanent stiffness reduction), which bone is likely to experience. Some such models have been developed by conducting homogenization-based multiscale finite element simulations on bone micro-structure. While homogenization has been fairly successful in the elastic regime and, to some extent, in modeling the macroscopic plastic response, it has remained a challenge with respect to modeling damage. This study uses a homogenization scheme to upscale the damage behavior from the tissue level (microscale) to the organ level (macroscale) and assesses the suitability of different damage constitutive laws. Ten cubic specimens were each subjected to 21 strain-controlled load cases for a small range of macroscopic post-elastic strains. Isotropic and anisotropic criteria were considered, density and fabric relationships were used in the formulation of the damage law, and a combined isotropic/anisotropic law with tension/compression asymmetry was formulated, based on the homogenized results, as a possible alternative to the currently used single scalar damage criterion. This computational study enhances the current knowledge on the macroscopic damage behavior of trabecular bone. By developing relationships of damage progression with bone's micro-architectural indices (density and fabric) the study also provides an aid for the creation of more precise macroscale continuum models, which are likely to improve clinical predictions.

Highlights

  • The growth of older population around the world in the last few decades has caused an increase in problems which can be associated to deteriorated mechanical properties of bone; osteoporosis is the clearest example of one such condition.Computer models have been extensively employed to evaluate the mechanical response of bone and bone-implant systems under a range of loading scenarios (Pankaj, 2013)

  • The macroscopic damage behavior of trabecular bone has been researched in a few studies, but these are usually restricted to uniaxial load scenarios which only permit the assessment of stiffness reduction in the direction of loading (Keaveny et al, 1994b; Zioupos et al, 2008; Garcia et al, 2009)

  • This study investigated the possible relationship between damage at the tissue level and the macroscopic multi-axial damage behavior, by employing a homogenization-based multiscale approach to samples with a relatively wide range of BV/TV and fabric tensor eigenvalues, subjected to multiple loading scenarios

Read more

Summary

Introduction

The growth of older population around the world in the last few decades has caused an increase in problems which can be associated to deteriorated mechanical properties of bone; osteoporosis is the clearest example of one such condition.Computer models have been extensively employed to evaluate the mechanical response of bone and bone-implant systems under a range of loading scenarios (Pankaj, 2013). In the large majority of studies, bone is assumed to be linear elastic and isotropic, i.e. its properties at a certain point in space are the same in all directions. It is well- recognized that the cellular microstructure of trabecular bone renders it anisotropic (Turner et al, 1990; Odgaard et al, 1997), i.e., properties at a point in space vary in different directions. Finite element (FE) analysis of the bone microstructure, in which the solid and pore phases are explicitly modeled, has been used to evaluate the homogenized anisotropic linear elastic properties of bone in the past two decades. Some studies have attempted the evaluation of homogenized yield behaviour (Cowin, 1986; Wolfram et al, 2012; Levrero-Florencio et al, 2016)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call