Abstract
Until now, all methods for temperature sensing in capillary electrophoresis (CE) relied on molecular probes with temperature-dependent spectral/optical properties. Here we introduce a nonspectroscopic approach to determining temperature in CE. It is based on measuring a temperature-dependent rate constant of complex dissociation by means of a kinetic CE method known as nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM). Conceptually, a calibration curve of "the rate constant versus temperature" is built using NECEEM and a CE instrument with a reliable temperature control or, alternatively, a nonelectrophoretic method, such as surface plasmon resonance. The calibration curve is then used to find the temperature during CE in the same buffer but with another CE apparatus or under otherwise different conditions (cooling efficiency, length and diameter of the capillary, electrical field, etc.). In this proof-of-principle work, we used the dissociation of a protein-DNA complex to demonstrate that the NECEEM-based temperature determination method allows for temperature determination in CE with a precision of 2 degrees C. Then, we applied the NECEEM-based temperature determination method to study heat dissipation efficiency in CE instruments with active and passive cooling of the capillary. The nonspectroscopic nature of the method makes it potentially applicable to nonspectroscopic detection schemes, e.g. electrochemical detection. A "kinetic probe" can be coloaded into the capillary along with a sample for in situ temperature measurements. Higher order chemical reactions can also be used for temperature sensing, provided a kinetic CE method for measuring a corresponding rate constant is available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.