Abstract

The effect of inter-strand and intra-strand interactions is explored in a metallo-supramolecular system in which the metal-ligand coordination requirements may be satisfied by more than one different supramolecular architecture. This is achieved by introducing alkyl substituents onto the spacers of readily prepared bis(pyridylimine) ligands. The alkyl substituents induce twisting within the ligand strand and this intra-strand effect favours formation of helical architectures. The alkyl substituents also introduce inter-strand CH.pi interactions into the system. For the smaller methyl group these are most effectively accommodated in a trinuclear circular helicate architecture. A solution mixture of dinuclear double-helicate and trinuclear circular helicate results from which, for copper(I), the trinuclear circular helicate crystallises. The CH.pi interactions endow the circular helicate with a bowl-shaped conformation and the triangular unit aggregates into a tetrahedral ball-shaped array. Low-temperature NMR studies indicate that the CH.pi interactions also confer a bowl-shaped conformation on the triangle in solution. The larger ethyl groups can sustain intra-strand CH.pi interactions in the lower nuclearity double-helical system and this is the unique architecture for that ligand system in both solution and the solid state. Crystal structures are described for both the copper(I) and silver(I) complexes. Thus we show that intra-strand interactions may be used to induce helicity within this system, while the nuclearity of the array can be prescribed by the inter-strand interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.