Abstract

Nowadays there is increasing interest in identifying–and using–metabolites that can be employed as biomarkers for diagnosing, treating and monitoring diseases. Saliva and NMR have been widely used for this purpose as they are fast and inexpensive methods. This case-control study aimed to find biomarkers that could be related to glioblastoma (GBL) and periodontal disease (PD) and studied a possible association between GBL and periodontal status. The participants numbered 130, of whom 10 were diagnosed with GBL and were assigned to the cases group, while the remaining 120 did not present any pathology and were assigned to the control group. On one hand, significantly increased (p < 0.05) metabolites were found in GBL group: leucine, valine, isoleucine, propionate, alanine, acetate, ethanolamine and sucrose. Moreover, a good tendency to separation between the two groups was observed on the scatterplot of the NMR. On the other hand, the distribution of the groups attending to the periodontal status was very similar and we didn´t find any association between GBL and periodontal status (Chi-Square 0.1968, p = 0.91). Subsequently, the sample as a whole (130 individuals) was divided into three groups by periodontal status in order to identify biomarkers for PD. Group 1 was composed of periodontally healthy individuals, group 2 had gingivitis or early periodontitis and group 3 had moderate to advanced periodontitis. On comparing periodontal status, a significant increase (p < 0.05) in certain metabolites was observed. These findings along with previous reports suggest that these could be used as biomarkers of a PD: caproate, isocaproate+butyrate, isovalerate, isopropanol+methanol, 4 aminobutyrate, choline, sucrose, sucrose-glucose-lysine, lactate-proline, lactate and proline. The scatter plot showed a good tendency to wards separation between group 1 and 3.

Highlights

  • NMR spectroscopy analysis provides information on both the structure and the composition of low-molecular-mass metabolites in biological fluids and is a rapid and low-cost technique for exploring pathological metabolic processes

  • Valine, isoleucine, alanine, ethanolamine and sucrose was more concentrated in control patients, whereas pronionate and acetate were more concentrated in GBL patients

  • This is the first study that uses HNMR in saliva samples to identify possible biomarkers of GBL but we have found some metabolites significantly increased in GBL patients in accordance with previous studies that uses tumor cells [26, 27]

Read more

Summary

Introduction

NMR spectroscopy analysis provides information on both the structure and the composition of low-molecular-mass metabolites in biological fluids and is a rapid and low-cost technique for exploring pathological metabolic processes. The major advantages of NMR spectroscopy include its unbiased metabolite detection, quantitative nature, and high reproducibility. NMRbased metabolomics could be appropriate as a cost-effective solution for high throughput analysis [1]. Saliva is a complex biofluid vital for the maintenance of healthy oral tissues. Saliva is composed predominantly by water and consists of a mixture of proteins, enzymes, mucus, hormones, electrolytes, ions and small molecular weight. The saliva collection method is easy, fast and non-invasive [2]. In the last years, screening saliva has been proposed for diagnosing, monitoring and treating several diseases [3]

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call