Abstract

Block-truncated poly(phosphodiester)s are digital macromolecules storing binary information that can be decoded by MS/MS sequencing of individual blocks released as primary fragments of the entire polymer. As such, they are ideal species for the serial sequencing methodology enabled by MS-(CID)-IMS-(CID)-MS coupling, where two activation stages are combined in-line with ion mobility spectrometry (IMS) separation. Yet, implementation of this coupling still requires efforts to achieve IMS resolution of inner blocks, that can be considered as small oligomers with α termination composed of one nitroxide decorated with a different tag. As shown by molecular dynamics simulation, these oligomers adopt a conformation where the tag points out of the coil formed by the chain. Accordingly, the sole nitroxide termination was investigated here as a model to reduce the cost of calculation aimed at predicting the shift of collision cross-section (CCS) induced by new tag candidates and extrapolate this effect to nitroxide-terminated oligomers. A library of 10 nitroxides and 7 oligomers was used to validate our calculation methods by comparison with experimental IMS data as well as our working assumption. Based on conformation predicted by theoretical calculation, three new tag candidates could be proposed to achieve the +40 Å2 CCS shift required to ensure IMS separation of oligomers regardless of their coded sequence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call