Abstract

Kinetic theory models exhibit dynamics that depend on a few low-order moments of the underlying conformational distribution function. This dependence is exhibited in a compact spectrum of eigenvalues for the Jacobian matrix associated with the dynamical system. We take advantage of this spectrum of eigenvalues through Newton-GMRES iterations to enable dynamic viscoelastic simulators (time-steppers) to obtain stationary states and perform stability/bifurcation analysis. Results are presented for three example problems: (1) the equilibrium behavior of the Doi model with the Onsager excluded volume potential, (2) pressure-driven flow of non-interacting rigid dumbbells in a planar channel, and (3) pressure-driven flow of non-interacting rigid dumbbells through a planar channel with a linear array of equally spaced cylinders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.