Abstract
Purpose of reseach . This work is devoted to solving one of the problems associated with the control of walking robots based on their dynamic mathematical model − the presence in it of obvious mechanical bonds due to reactions of bonds with the supporting surface. To solve this problem, it is proposed to use a fully connected neural network to evaluate the forces of normal reactions between the surface and the feet of a bipedal walking machine during its implementation of one step. Methods. The paper considers two neural network architectures based on fully connected layers with ReLU activation functions. The architecture of the neural network includes five fully connected layers (input, output and three hidden), and an alternative architecture includes a thinning layer after each fully connected layer. The input data for the network are the state of the robot and the required control actions, and the output is the predicted reaction forces. The training sample is generated by modeling a complete dynamic model of the robot. The network is built and trained using machine learning libraries Keras and TensorFlow. Results. The generation of training sample for neural network is described here, and it is carried out the training of two architectures of neural networks. Based on the simulation data, it was established that both trained neural networks are able to accurately predict the values of normal reactions using the values of generalized coordinates and velocities, as well as control actions as input, however, a static prediction error is observed. Conclusion . The results obtained within the framework of the article can be further used to control the movement of bipedal walking machines on various types of surfaces.
Highlights
It is proposed to use a fully connected neural network to evaluate the forces of normal reactions between the surface and the feet of a bipedal walking machine during its implementation of one step
The paper considers two neural network architectures based on fully connected layers with ReLU activation functions
The training sample is generated by modeling a complete dynamic model of the robot
Summary
Использование нейронных сетей для прогнозирования нормальных реакций шагающего робота. Для решения указанной проблемы предлагается использовать полносвязную нейронную сеть для оценки сил нормальных реакций между поверхностью и стопами двуногого шагающего робота во время реализации им одного шага. Описана генерация обучающей выборки для нейронной сети, проведено обучение двух архитектур нейронных сетей. На основании данных моделирования установлено, что обе обученные нейронные сети способны точно предсказывать значения нормальных реакций с использованием значений обобщенных координат и скоростей, а также управляющих воздействий в качестве входных данных, однако при этом наблюдается статическая ошибка предсказания. Ключевые слова: двуногий шагающий робот; нейронная сеть; архитектура нейронной сети; слой прореживания; полносвязный слой; обучающая и верификационная выборки; нормальные реакции. Использование нейронных сетей для прогнозирования нормальных реакций шагающего робота // Известия Юго-Западного государственного университета.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.