Abstract

Dry eye disease (DED) is a multifactorial disease of the ocular surface, which affects the quality of life and work efficiency of affected patients. The traditional Chinese medicine formula Qiju Dihuang Pill (QJDHP) has a good therapeutic effect on DED. However, the pharmacological mechanism is not clear. To explore the mechanism of QJDHP in the treatment of DED based on network pharmacology. The active components in QJDHP were screened in Traditional Chinese Medicine Systems Pharmacology (TCMSP), and putative molecular targets of QJDHP were identified using the SwissTargetPrediction database. DED-related targets were screened by GeneCards and OMIM. We established protein-protein interaction (PPI) and core targets and corresponding active compound network by Cytoscape to identify the core targets and main compounds of QJDHP against DED. DAVID database was utilized for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Molecular docking was used to evaluate the binding activity between key active compounds and core targets. The results of network pharmacology showed that 253 targets of QJDHP were related to DED. PPI network analysis showed the 18 core targets. The binding affinity of docking results ranged from -5.7 to -9.3 kcal/mol, indicating a good docking effect. The results of GO enrichment analysis showed that the mechanism of QJDHP in the treatment of DED mainly involved biological processes such as apoptosis, oxidative stress, response to estrogen, angiogenesis, and the regulation of transcription factors. KEGG analysis showed that QJDHP may be regulated by the TNF signaling pathway, Toll-like receptor signaling pathway, MAPK signaling pathway, and estrogen signaling pathway in the treatment of DED. In this study, we demonstrated the multicomponent, multitarget, and multichannel action mechanism of QJDHP in the treatment of DED and provided a foundation for further drug development research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.