Abstract

Understanding the relationship between genetic variation and gene expression is a central question in genetics. With the availability of data from high-throughput technologies such as ChIP-Chip, expression, and genotyping arrays, we can begin to not only identify associations but to understand how genetic variations perturb the underlying transcription regulatory networks to induce differential gene expression. In this study, we describe a simple model of transcription regulation where the expression of a gene is completely characterized by two properties: the concentrations and promoter affinities of active transcription factors. We devise a method that extends Network Component Analysis (NCA) to determine how genetic variations in the form of single nucleotide polymorphisms (SNPs) perturb these two properties. Applying our method to a segregating population of Saccharomyces cerevisiae, we found statistically significant examples of trans-acting SNPs located in regulatory hotspots that perturb transcription factor concentrations and affinities for target promoters to cause global differential expression and cis-acting genetic variations that perturb the promoter affinities of transcription factors on a single gene to cause local differential expression. Although many genetic variations linked to gene expressions have been identified, it is not clear how they perturb the underlying regulatory networks that govern gene expression. Our work begins to fill this void by showing that many genetic variations affect the concentrations of active transcription factors in a cell and their affinities for target promoters. Understanding the effects of these perturbations can help us to paint a more complete picture of the complex landscape of transcription regulation. The software package implementing the algorithms discussed in this work is available as a MATLAB package upon request.

Highlights

  • With advances in whole genome high-throughput technologies such as ChIP-Chip, expression, and genotyping arrays, it is possible to integrate data from these sources together to decipher the complex regulatory networks that govern transcription

  • We present work that focuses on considering a specific set of regulators called transcription factors whose targets can be verified from experiments and whose interactions with those targets have been well studied and modeled

  • We applied our method to study an expression data collected over 112 segregants of Saccharomyces cerevisiae yeast and two separate ChIP-Chip datasets generated by Harbisonet al. and Lee et al..We identified several interesting global regulatory networks perturbed by single nucleotide polymorphisms (SNPs) located in regulatory hotspots

Read more

Summary

Introduction

With advances in whole genome high-throughput technologies such as ChIP-Chip, expression, and genotyping arrays, it is possible to integrate data from these sources together to decipher the complex regulatory networks that govern transcription. At the heart of these networks are a few regulator genes such as transcription factors (TFs), miRNAs and histones whose activity govern the behavior of many other genes. Among these regulators, transcription factors that bind the promoter regions of genes are by far the most well understood. The process of TFs activating or repressing transcription at initiation is believed to be the primary mechanism of gene regulation. A central question in genetics is how genetic variations perturb this underlying regulatory mechanism to give rise to differential gene expression and complex phenotypes

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.