Abstract

Abstract The liquefaction, gasification, and other chemical modifications of oil shale are challenging goals of chemistry and chemical engineering. The use of new solvent systems, such as supercritical fluids and ionic liquids, represents new avenues in the search of environmentally benign technologies. Supercritical fluid extraction (SFE) with carbon dioxide is particularly effective for the isolation of substances of medium molecular weight and relatively low polarity. At elevated temperatures it is possible to unite the breaking chemical bonds in the kerogen organic matter and convert the former into oil with extraction using supercritical fluids. Quantitative and qualitative information obtained at different temperatures during SFE is providing some insight into the speciation of hydrocarbons in geological samples. Ionic liquids were studied as potential solvents for kerogen extraction. However, these chemical processes are favored at elevated temperatures up to the thermal degradation temperature of kerogen, 400 C. There were observed significant differences in the chemical composition of extracted oil and from the oil from the classical semicoking process of oil shale. An additional application would be a combination of the two methodsthe use of supercritical carbon dioxide to recover nonvolatile organic compounds from room-temperature ionic liquid without using organic solvents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.