Abstract

Training non-scientists in the use of volcano-monitoring data is critical preparation in advance of a volcanic crisis, but it is currently unclear which methods are most effective for improving the content-knowledge of non-scientists to help bridge communications between volcano experts and non-experts. We measured knowledge gains for beginning-(introductory-level students) and novice-level learners (students with a basic understanding of geologic concepts) engaged in the Volcanoes Exploration Program: Pu‘u ‘Ō‘ō (VEPP) “Monday Morning Meeting at the Hawaiian Volcano Observatory” classroom activity that incorporates authentic Global Positioning System (GPS), tilt, seismic, and webcam data from the Pu‘u ‘Ō‘ō eruptive vent on Kīlauea Volcano, Hawai‘i (NAGT website, 2010), as a means of exploring methods for effectively advancing non-expert understanding of volcano monitoring. Learner groups consisted of students in introductory and upper-division college geology courses at two different institutions. Changes in their content knowledge and confidence in the use of data were assessed before and after the activity using multiple-choice and open-ended questions. Learning assessments demonstrated that students who took part in the exercise increased their understanding of volcano-monitoring practices and implications, with beginners reaching a novice stage, and novices reaching an advanced level (akin to students who have completed an upper-division university volcanology class). Additionally, participants gained stronger confidence in their ability to understand the data. These findings indicate that training modules like the VEPP: Monday Morning Meeting classroom activity that are designed to prepare non-experts for responding to volcanic activity and interacting with volcano scientists should introduce real monitoring data prior to proceeding with role-paying scenarios that are commonly used in such courses. The learning gains from the combined approach will help improve effective communications between volcano experts and non-experts during times of crisis, thereby reducing the potential for confusion and misinterpretation of data.

Highlights

  • Communication between scientists and non-scientists is a significant challenge in volcanology (e.g., McGuire et al 2009)

  • We developed the “Volcanoes Exploration Program: Pu‘u ‘Ō‘ō (VEPP): Monday Morning Meeting at the Hawaiian Volcano Observatory” (MMM) activity to give students the opportunity to work in small groups to use VEPP data to monitor an eruptive event at Pu‘u ‘Ō‘ō. The goal of this work is to determine if the MMM VEPP activity effectively results in transitioning beginner or novice level students to the advanced level on the spectrum of comprehension for volcano monitoring techniques and if their ability to interact with experts increases

  • Scores on Pre-MMM surveys reflect their unfamiliarity and lack of confidence in the use of scientific volcano monitoring data, but their increase to the novice level with very large learning gains (0.38-0.59) demonstrates their improved understanding of information provided by expert scientists

Read more

Summary

Introduction

Communication between scientists and non-scientists (e.g. policy makers, the general public) is a significant challenge in volcanology (e.g., McGuire et al 2009). Real- and near-real-time datasets, including webcam imagery, earthquake locations, and surface deformation, that are available via the Internet are increasingly common for volcanoes around the world and constitute a valuable, yet largely unrealized, resource for formal and informal geoscience education. Such data demonstrate the dynamic nature of the Earth and are an effective means of connecting with students and other non-experts, especially once they realize that they are looking at the same information- at the same time as professionals who are attempting to better understand volcanic processes. Online datasets (e.g. GEOROC, IODP/Janus, Marine Geoscience Data System, Smithsonian GVN, and other databases), are seldom comprehensive, presented in a format useful for in-class adaptation, or accompanied by background information to aid with interpretation—aspects that are critical for educational applications both in and outside of the classroom

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.