Abstract

Finding ways to deliver drugs to specific, hard-to-reach areas of the human body remains a major challenge in drug development. Drug molecules that enter the body via a pill or an injection circulate in the blood until they reach the target location—a process that can be slow and imprecise. For years, many chemists have been building synthetic nanomotors—nanoparticles that propel themselves—to navigate the vessel-based highways of the body and drop off drugs in specific locations. But these artificial motors typically need fuels like hydrogen peroxide or glucose to run. “The motors that we can build synthetically are vastly inferior to the biological ones,” like bacterial cells or sperm that have built-in mechanisms to help them swim, says Adam W. Feinberg of Carnegie Mellon University. They’ve been optimized over millions of years and move with minimal energy consumption, he adds. So researchers are now looking to these natural motors to help

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.