Abstract
Efficiently identifying the social risks of patients with serious illnesses (SIs) is the critical first step in providing patient-centered and value-driven care for this medically vulnerable population. To apply and further hone an existing natural language process (NLP) algorithm that identifies patients who are homeless/at risk of homeless to a SI population. Patients diagnosed with SI between 2019 and 2020 were identified using an adapted list of diagnosis codes from the Center for Advance Palliative Care from the Kaiser Permanente Southern California electronic health record. Clinical notes associated with medical encounters within 6months before and after the diagnosis date were processed by a previously developed NLP algorithm to identify patients who were homeless/at risk of homelessness. To improve the generalizability to the SI population, the algorithm was refined by multiple iterations of chart review and adjudication. The updated algorithm was then applied to the SI population. Among 206993 patients with a SI diagnosis, 1737 (0.84%) were identified as homeless/at risk of homelessness. These patients were more likely to be male (51.1%), age among 45-64years (44.7%), and have one or more emergency visit (65.8%) within a year of their diagnosis date. Validation of the updated algorithm yielded a sensitivity of 100.0% and a positive predictive value of 93.8%. The improved NLP algorithm effectively identified patients with SI who were homeless/at risk of homelessness and can be used to target interventions for this vulnerable group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.