Abstract

In 2010, the Deepwater Horizon accident released 4.6–6.0 × 10(11) grams or 4.1 to 4.6 million barrels of fossil petroleum derived carbon (petrocarbon) as oil into the Gulf of Mexico. Natural abundance radiocarbon measurements on surface sediment organic matter in a 2.4 × 10(10) m(2) deep-water region surrounding the spill site indicate the deposition of a fossil-carbon containing layer that included 1.6 to 2.6 × 10(10) grams of oil-derived carbon. This quantity represents between 0.5 to 9.1% of the released petrocarbon, with a best estimate of 3.0–4.9%. These values may be lower limit estimates of the fraction of the oil that was deposited on the seafloor because they focus on a limited mostly deep-water area of the Gulf, include a conservative estimate of thickness of the depositional layer, and use an average background or prespill radiocarbon value for sedimentary organic carbon that produces a conservative value. A similar approach using hopane tracer estimated that 4–31% of 2 million barrels of oil that stayed in the deep sea settled on the bottom. Converting that to a percentage of the total oil that entered into the environment (to which we normalized our estimate) converts this range to 1.8 to 14.4%. Although extrapolated over a larger area, our independent estimate produced similar values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.